Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(10): 2398-2411, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38445598

RESUMO

The activation of the muscular nicotinic acetylcholine receptor (nAChR) produces the opening of the channel, with the consequent increase in the permeability of cations, triggering an excitatory signal. Free fatty acids (FFA) are known to modulate the activity of the receptor as noncompetitive antagonists, acting at the membrane-AChR interface. We present molecular dynamics simulations of a model of nAChR in a desensitized closed state embedded in a lipid bilayer in which distinct membrane phospholipids were replaced by two different monounsaturated FFA that differ in the position of a double bond. This allowed us to detect and describe that the cis-18:1ω-9 FFA were located at the interface between the transmembrane segments of α2 and γ subunits diffused into the channel lumen with the consequent potential ability to block the channel to the passage of ions.


Assuntos
Receptores Nicotínicos , Animais , Receptores Nicotínicos/química , Simulação de Dinâmica Molecular , Ácido Oleico , Sítios de Ligação , Membrana Celular/metabolismo , Torpedo/metabolismo
2.
Molecules ; 29(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398572

RESUMO

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Assuntos
Lipídeos de Membrana , Receptores Nicotínicos , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Transferência Ressonante de Energia de Fluorescência , Membranas/metabolismo , Receptores Nicotínicos/metabolismo
3.
Mol Pharmacol ; 101(3): 154-167, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969831

RESUMO

Alzheimer's disease is a multifactorial neurodegenerative disorder. Since cholinergic deficit is a major factor in this disease, two molecular targets for its treatment are the acetylcholinesterase (AChE) and the nicotinic acetylcholine receptors (nAChRs). Given that caffeine is a natural compound that behaves as an AChE inhibitor and as a partial agonist of nAChRs, the aim of this work was to synthetize more potent bifunctional caffeine analogs that modulate these two molecular targets. To this end, a theophylline structure was connected to a pyrrolidine structure through a methylene chain of different lengths (3 to 7 carbon atoms) to give compounds 7-11 All caffeine derivatives inhibited the AChE, of which compound 11 showed the strongest effect. Electrophysiological studies showed that all compounds behave as agonists of the muscle and the neuronal α7 nAChR with greater potency than caffeine. To explore whether the different analogs could affect the nAChR conformational state, the nAChR conformational-sensitive probe crystal violet (CrV) was used. Compounds 9 and 10 conduced the nAChR to a different conformational state comparable with a control nAChR desensitized state. Finally, molecular docking experiments showed that all derivatives interacted with both the catalytic and anionic sites of AChE and with the orthosteric binding site of the nAChR. Thus, the new synthetized compounds can inhibit the AChE and activate muscle and α7 nAChRs with greater potency than caffeine, which suggests that they could be useful leaders for the development of new therapies for the treatment of different neurologic diseases. SIGNIFICANCE STATEMENT: In this work we synthetized caffeine derivatives which can inhibit acetylcholinesterase and activate both muscle and α7 nicotinic acetylcholine receptors (nAChRs) with higher potency than caffeine. These analogs can be divided into two groups: a non-desensitizing and a desensitizing nAChR group. From the nAChR non-desensitizing group, we propose compound 11 as the most interesting analog for further studies since it inhibits acetylcholinesterase with the highest potency and activates the nAChRs in the picomolar range without inducing receptor desensitization.


Assuntos
Cafeína/análogos & derivados , Cafeína/síntese química , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Cafeína/metabolismo , Cafeína/farmacologia , Electrophorus , Células HEK293 , Humanos , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Torpedo , Receptor Nicotínico de Acetilcolina alfa7/química
4.
Biochim Biophys Acta Biomembr ; 1862(9): 183357, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416195

RESUMO

Ram sperm are particularly sensitive to freeze-thawing mainly due to their lipid composition, limiting their use in artificial insemination programs. We evaluated the extent of cholesterol and desmosterol incorporation into ram sperm through incubation with increasing concentrations of methyl-ß-cyclodextrin (MßCD)-sterol complexes, and its effect on membrane biophysical properties, membrane lateral organization and cryopreservation outcome. Sterols were effectively incorporated into the sperm membrane at 10 and 25 mM MßCD-sterols, similarly increasing membrane lipid order at physiological temperature and during temperature decrease. Differential ordering effect of sterols in ternary-mixture model membranes revealed a reduced tendency of desmosterol of segregating into ordered domains. Live cell imaging of fluorescent cholesterol showed sterol incorporation and evidenced the presence of sperm sub-populations compatible with different sterol contents and a high concentration of sterol rich-ordered domains mainly at the acrosome plasma membrane. Lateral organization of the plasma membrane, assessed by identification of GM1-related rafts, was preserved after sterol incorporation except when high levels of sterols (25 mM MßCD-desmosterol) were incorporated. Ram sperm incubation with 10 mM MßCD-sterols prior to cryopreservation in a cholesterol-free extender improved sperm quality parameters after cooling and freezing. While treatment with 10 mM MßCD-cholesterol increased sperm motility, membrane integrity and tolerance to osmotic stress after thawing, incorporation of desmosterol increased the ability of ram sperm to overcome osmotic stress. Our research provides evidence on the effective incorporation and biophysical behavior of cholesterol and desmosterol in ram sperm membranes and on their consequences in improving functional parameters of sperm after temperature decrease and freezing.


Assuntos
Membrana Celular/metabolismo , Criopreservação , Desmosterol/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Animais , Masculino , Ovinos , beta-Ciclodextrinas/farmacologia
5.
Front Cell Neurosci ; 13: 309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379503

RESUMO

Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer's disease (AD) is associated with a perturbation in different membrane properties. Amyloid-ß (Aß) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aß peptides forming senile plaques, together with soluble oligomeric species of Aß, are considered the major cause of the synaptic dysfunction of AD. The association between Aß peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aß production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aß partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AßPP by ß- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aß processing, Aß partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.

6.
Langmuir ; 34(14): 4398-4407, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29540057

RESUMO

In rat sperm heads, sphingomyelin (SM) species that contain very long-chain polyunsaturated fatty acid (V-SM) become ceramides (V-Cer) after inducing in vitro the acrosomal reaction. The reason for such a specific location of this conversion, catalyzed by a sphingomyelinase (SMase), has received little investigation so far. Here, the effects of SMase were compared in unilamellar vesicles (large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs)) containing phosphatidylcholine, and either V-SM or a palmitate-rich SM (P-SM). In uniformly sized LUVs at 37 °C, more V-Cer was generated and more rapidly than P-Cer. Nephelometry and dynamic light scattering showed that LUVs tended to form large lipid particles more intensely, and Förster resonance energy transfer (FRET) increases suggested that lateral lipid mixing was more marked when V-Cer rather than P-Cer was produced. As reported by 6-dodecanoyl-2-dimethyl-aminopnaphthalene (Laurdan) and 1,6-diphenyl-1,3,5,-hexatriene (DPH), the production of V-Cer resulted in higher and faster restriction in lipid mobility than that of P-Cer, implying a stronger increase in membrane dehydration and microviscosity. Moreover, DPH anisotropy suggested a higher solubility of V-Cer than that of P-Cer in the liquid-disordered phase. At room temperature, liquid-condensed lateral domains appeared in P-SM- but not in V-SM-containing GUVs. The former maintained their size while losing their contents gradually during SMase action, whereas the latter became permeable earlier and reduced their size in few minutes until suddenly collapsing. The fast and potent generation of V-Cer may contribute to the membrane restructuring events that occur on the acrosome-reacted sperm head.


Assuntos
Ceramidas/química , Animais , Ácidos Graxos Insaturados , Masculino , Fosfatidilcolinas , Ratos , Esfingomielina Fosfodiesterase , Esfingomielinas
7.
PLoS One ; 12(7): e0180451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686720

RESUMO

Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-ß-cyclodextrin (MßCD) did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane) and cholesteryl esters (stored in lipid droplets), revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MßCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs) among seasons and a dynamic organizational structure of cholesterol homeostasis within the COC. Modulation of membrane cholesterol by MßCD improved survival of bovine oocytes and preserved integrity of GM1-related rafts after vitrification.


Assuntos
Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Oócitos/metabolismo , Animais , Bovinos , Criopreservação/métodos , Crioprotetores/farmacologia , Células do Cúmulo/metabolismo , Feminino , Meiose , Vitrificação
8.
Front Physiol ; 7: 573, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965583

RESUMO

Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.

9.
Arch Biochem Biophys ; 591: 76-86, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702544

RESUMO

We have previously shown that the intact nicotinic acetylcholine receptor (AChR) lacks preference for Lo domains when reconstituted in a sphingomyelin (SM), cholesterol (Chol) and POPC (1:1:1) model system (Bermúdez V, Antollini SS, Fernández-Nievas GA, Aveldaño MI, Barrantes FJ. J. Lipid Res. 2010; 51: 2629-2641). Here, we have furthered our studies by characterizing the influence of different lipid host compositions on the distribution of purified AChR reconstituted in two model systems (POPC:Chol, 1:1 and POPC:Chol:SM, 1:1:1), involving a) different SM species (porcine brain SM (bSM), 16:0-SM, 18:0-SM or 24:1-SM); or b) induced transbilayer asymmetry, resulting from enrichment in bSM in the external hemilayer. AChR distribution was evaluated by fluorescence resonance energy transfer efficiency between the AChR intrinsic fluorescence and Laurdan or dehydroergosterol fluorescence, and by analyzing the distribution of AChR in detergent-resistant and detergent-soluble fractions (1% Triton X-100, 4 °C). bSM-induced transbilayer asymmetry or the presence of 16:0-SM and/or 18:0-SM (unlike bSM or 24:1-SM) resulted in the preferential partitioning of AChR in Lo domains, suggesting that the localization of AChR in ordered domains strongly depends on the characteristics of the host lipid membrane, and in particular on the sphingolipid composition and transbilayer asymmetry.


Assuntos
Bicamadas Lipídicas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Receptores Nicotínicos/química , Esfingomielinas/química , Sítios de Ligação , Ligação Proteica , Estrutura Terciária de Proteína
10.
Biol Reprod ; 93(6): 140, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490842

RESUMO

In spermatozoa isolated from rat epididymis, lipids are differentially modified after in vitro induction of capacitation (Cap) and the acrosomal reaction (AR). This study uses Laurdan fluorescence generalized polarization values (GPv) to evaluate the effect of lipid changes occurring after isolation and functional activation on sperm membrane biophysical properties. In gametes isolated in the presence of a divalent cation chelator, no lipid changes occurred and the GPv were the lowest recorded, indicating maximal membrane lipid mobility. In sperm isolated as rapidly and gently as possible in the absence of chelator, part of the sphingomyelins (SM) were converted into ceramides (Cer), giving rise to higher GPv. In samples incubated as controls for Cap and AR, unchanged cholesterol and reduced glycerophospholipid levels were accompanied by the accumulation of free fatty acids (FFA), leading to even higher GPv. After completion of Cap, the GPv returned to lower levels as a result of the spermatozoa losing part of their cholesterol and FFA. Cap samples became relatively enriched in polyunsaturated fatty acids-containing plasmalogens because hydrolysis affected phosphatidyl rather than plasmenyl glycerophospholipid subclasses. The highest Cer:SM ratio and the highest GPv were found after completion of AR induced by A23187. The degree of SM → Cer conversion among the samples, including controls, correlated with the extent of AR. FFA and Cer augmented GPv when added to liposomes prepared from the membrane lipid of intact sperm. Our results underscore the importance of hydrolytic changes that affect sperm lipids, especially the decisive lipid SM and Cer pair, not only after inducing sperm functional changes such as Cap and AR, but also under control conditions.


Assuntos
Glicerofosfolipídeos/metabolismo , Lipídeos/análise , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Animais , Sobrevivência Celular/fisiologia , Colesterol/metabolismo , Masculino , Fosforilação , Ratos , Ratos Wistar
11.
Biochim Biophys Acta ; 1838(3): 731-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24315999

RESUMO

Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28-32 carbon atoms, 4-5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Espermatozoides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/química , Masculino , Transição de Fase , Ratos , Propriedades de Superfície , Termodinâmica
12.
J Lipid Res ; 54(8): 2225-2235, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23687296

RESUMO

In rat germ cells and spermatozoa, sphingomyelin (SM) contains molecular species with nonhydroxy (n) and 2-hydroxy (h) very-long-chain polyunsaturated fatty acids (V), the most abundant being SMs with (n- and h-) 28:4n-6, 30:5n-6, and 32:5n-6 as acyl chains. The aim of this study was to gain information about their thermotropic behavior and interactions with other lipids. After isolation from rat testis, multilamellar and giant unilamellar vesicles from these SMs were examined using fluorescent probes. Only n-32:5 SM and h-32:5 SM displayed a gel-liquid transition temperature (Tt ∼ 21-22°C), the rest remaining in the liquid state in the 5°C-45°C range. The degree of order was larger in bilayers of any of the h-V SMs than in those of their chain-matched n-V SMs. Both, but n-V SM relatively more than h-V SM, decreased the Tt of dimyristoylphosphatidylcholine as their proportion increased in binary phosphatidylcholine:SM liposomes. In contrast to the established ability of 16:0 SM to form lateral cholesterol/SM-rich ordered domains in ternary dioleoylphosphatidylcholine:cholesterol:SM bilayers, neither n-V SM nor h-V SM showed a tendency to do so. Thus, these SMs are in the fluid state and are not involved in this type of domains in spermatozoa at physiological temperatures. However, this state could be altered at the very low temperatures at which these gametes are usually preserved.


Assuntos
Ácidos Graxos Insaturados/química , Esfingomielinas/química , Temperatura , Animais , Masculino , Ratos , Ratos Wistar , Esfingomielinas/isolamento & purificação
13.
Biochim Biophys Acta ; 1818(11): 2511-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22699039

RESUMO

Free fatty acids (FFAs) are non-competitive antagonists of the nicotinic acetylcholine receptor (AChR). Their site of action is supposedly located at the lipid-AChR interface. To elucidate the mechanism involved in this antagonism, we studied the effect that FFAs with a single double-bond at different positions (ω6, ω9, ω11 and ω13 cis-18:1) have on different AChR properties. Electrophysiological studies showed that only two FFAs (ω6 and ω9) reduced the duration of the channel open-state. The briefest component of the closed-time distribution remained unaltered, suggesting that ω6 and ω9 behave as allosteric blockers. Fluorescence resonance energy transfer studies indicated that all FFAs locate at the lipid-AChR interface, ω6 being restricted to annular sites and all others occupying non-annular sites. The perturbation of the native membrane order by FFAs was evaluated by DPH (1,6-diphenyl-1,3,5-hexatriene) and Laurdan fluorescence polarization studies, with the greatest decrease observed for ω9 and ω11. AChR conformational changes produced by FFAs present at the lipid bilayer were evaluated by fluorescence quenching studies of pyrene-labeled AChR and also using the AChR conformational-sensitive probe crystal violet. All cis-FFAs produced AChR conformational changes at the transmembrane level, but only ω9, ω11 and ω13 perturbed the resting state. Thus, the position and isomerism of the torsion angle of unsaturated FFAs are probably a key factor in terms of AChR blockage, suggesting that FFAs with a unique cis double bond at a superficial position inside the membrane directly inhibit AChR function by perturbing a potential conserved core structure for AChR gating at that level.


Assuntos
Ácidos Graxos não Esterificados/química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Regulação Alostérica , Animais , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas , Torpedo
14.
J Cell Biochem ; 112(11): 3276-88, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21748784

RESUMO

The neuronal-type α7 nicotinic acetylcholine receptor (α7AChR) is also found in various non-neural tissues, including vascular endothelium, where its peculiar ionotropic properties (high Ca(2+) permeability) and its supervening Ca(2+) -mediated intracellular cascades may play important roles in physiology (angiogenesis) and pathology (inflammation and atherogenesis). Changes in molecular (up-regulation, affinity, and conformational states) and cellular (distribution, association with membranes) properties of the α7AChR related to angiogenesis (wound-repair cell migration) and atherogenesis (alterations in cholesterol content) were studied in living endothelial cells, with the aim of determining whether such changes constitute early markers of inflammatory response. The combination of pharmacological, biochemical, and fluorescence microscopy tools showed that α7AChRs in rat arterial endothelial (RAEC) and human venous endothelial (HUVEC) cells occur at extremely low expression levels (∼50 fmol/mg protein) but undergo agonist-induced up-regulation at relatively high nicotine concentrations (∼300-fold with 50 µM ligand), increasing their cell-surface exposure. When analyzed in terms of cold Triton X-100 solubility and subcellular distribution, α7AChRs occur in the "non-raft" subcellular membrane fractions. Acute cholesterol depletion reduced not only cholesterol levels but also the number of cell-surface α7AChRs. Nicotine exposure markedly stimulated cell migration and accelerated wound repair, which drastically diminished in cells deprived of the sterol. The angiogenic effect of nicotine appears to be synergistic with cholesterol content. Finally, the apparent K(D) of α7AChRs for the open-channel blocker crystal violet was found to be ∼600-fold lower in receptor-enriched membranes obtained from up-regulated HUVEC.


Assuntos
Colesterol/farmacologia , Endotélio Vascular/metabolismo , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Western Blotting , Células Cultivadas , Endotélio Vascular/citologia , Microscopia de Fluorescência , Ratos , Regulação para Cima/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7
15.
Biol Reprod ; 85(4): 808-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21653896

RESUMO

Stimulation of full-grown amphibian oocytes with progesterone initiates a nontranscriptional signaling pathway that converges in the activation of Cdc2/cyclin B and reentry into meiosis. We observed that cholesterol depletion mediated by methyl-beta-cyclodextrin (MbetaCD) inhibited meiotic maturation, suggesting involvement of membrane rafts. In the present study, we further characterized caveolae-like membranes from Rhinella arenarum oocytes biochemically and functionally. The identification by mass spectrometry of a nonmuscle myosin heavy-chain associated with caveolar membranes showed evidence of direct involvement of the underlying cytoskeletal environment in the structure of oocyte rafts. Biophysical analysis using the fluorescent probe Laurdan revealed that MbetaCD-mediated cholesterol depletion affected membrane lipid order. In line with this finding, cholesterol removal also affected the localization of the raft marker lipid GM1. Results demonstrated that ceramide is an effective inducer of maturation that alters the distribution of the raft markers caveolin-1, SRC, and GM1, while progesterone seems not to affect membrane microdomain integrity. Cholesterol depletion had a greater effect on ceramide-induced maturation, thus suggesting that ceramide is an inducer more vulnerable to changes in the plasma membrane. MbetaCD treatment delayed tyrosine phosphorylation and MAPK activation in progesterone-induced maturation. Functional studies regarding tyrosine phosphorylation raise the possibility that the hormone receptor is located in the nonraft membrane in the absence of ligand and that it translocates to the caveola when it binds to progesterone. The presence of raft markers and the finding of signaling molecules from MAPK cascade functionally associated to oocyte light membranes suggest that this caveolae-rich fraction efficiently recreates, in part, maturation signaling.


Assuntos
Bufo arenarum/fisiologia , Ceramidas/metabolismo , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Oócitos/citologia , Oogênese , Progesterona/metabolismo , Proteínas de Anfíbios/metabolismo , Animais , Argentina , Cavéolas/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Feminino , Gangliosídeo G(M1)/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores de Progesterona/metabolismo , beta-Ciclodextrinas/farmacologia , Quinases da Família src/metabolismo
16.
J Lipid Res ; 51(9): 2629-41, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20516251

RESUMO

The nicotinic acetylcholine receptor (AChR) is in intimate contact with the lipids in its native membrane. Here we analyze the possibility that it is the intrinsic properties of the AChR that determine its partition into a given lipid domain. Torpedo AChR or a synthetic peptide corresponding to the AChR M4 segment (the one in closer contact with lipids) was reconstituted into "raft"-containing model membranes. The distribution of the AChR was assessed by Triton X-100 extraction in combination with fluorescence studies, and lipid analyses were performed on each sample. The influence of rapsyn, a peripheral protein involved in AChR aggregation, was studied. Raft-like domain aggregation was also studied using membranes containing the ganglioside GM1 followed by GM1 crosslinking. The gammaM4 peptide displays a marked preference for raft-like domains. In contrast, AChR alone or in the presence of rapsyn or ganglioside aggregation exhibits no such preference for raft-like domains, but it does cause a significant reduction in the total amount of these domains. The results indicate that the distribution of the AChR in lipid domains cannot be due exclusively to the intrinsic physicochemical properties of the protein and that there must be an external signal in native cell membranes that directs the AChR to a specific membrane domain.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Peptídeos/química , Receptores Nicotínicos/química , Animais , Detergentes/química , Transferência Ressonante de Energia de Fluorescência , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Torpedo
17.
Biochim Biophys Acta ; 1778(10): 2395-404, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18621019

RESUMO

The anticonvulsive drug Lamotrigine (LTG) is found to activate adult muscle nicotinic acetylcholine receptors (AChR). Single-channel patch-clamp recordings showed that LTG (0.05-400 microM) applied alone is able to open AChR channels. [125I]alpha-bungarotoxin-binding studies further indicate that LTG does not bind to the canonical ACh-binding sites. Fluorescence experiments using the probe crystal violet demonstrate that LTG induces the transition from the resting state to the desensitized state of the AChR in the presence of excess alpha-bungarotoxin, that is, when the agonist site is blocked. Allosterically-potentiating ligands or the open-channel blocker QX-314 exhibited a behavior different from that of LTG. We conclude that LTG activates the AChR through a site that is different from those of full agonists/competitive antagonists and allosterically-potentiating ligands, respectively.


Assuntos
Anticonvulsivantes/metabolismo , Receptores Nicotínicos , Triazinas/metabolismo , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Células CHO , Cricetinae , Cricetulus , Lamotrigina , Antagonistas Nicotínicos/metabolismo , Técnicas de Patch-Clamp , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo
18.
J Biol Chem ; 283(31): 21478-86, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18511419

RESUMO

Steroids and free fatty acids (FFA) are noncompetitive antagonists of the nicotinic acetylcholine receptor (AChR). Their site of action is purportedly located at the lipid-AChR interface, but their exact mechanism of action is still unknown. Here we studied the effect of structurally different FFA and steroids on the conformational equilibrium of the AChR in Torpedo californica receptor-rich membranes. We took advantage of the higher affinity of the fluorescent AChR open channel blocker, crystal violet, for the desensitized state than for the resting state. Increasing concentrations of steroids and FFA decreased the K(D) of crystal violet in the absence of agonist; however, only cis-unsaturated FFA caused an increase in K(D) in the presence of agonist. This latter effect was also observed with treatments that caused the opposite effects on membrane polarity, such as phospholipase A(2) treatment or temperature increase (decreasing or increasing membrane polarity, respectively). Quenching by spin-labeled fatty acids of pyrene-labeled AChR reconstituted into model membranes, with the label located at the gammaM4 transmembrane segment, disclosed the occurrence of conformational changes induced by steroids and cis-unsaturated FFA. The present work is a step forward in understanding the mechanism of action of this type of molecules, suggesting that the direct contact between exogenous lipids and the AChR transmembrane segments removes the AChR from its resting state and that membrane polarity modulates the AChR activation equilibrium by an independent mechanism.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Receptores Nicotínicos/química , Esteroides/metabolismo , Torpedo/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Cinética , Microscopia de Fluorescência/métodos , Modelos Biológicos , Modelos Químicos , Conformação Proteica , Pirenos/química , Receptores Colinérgicos/metabolismo , Temperatura
19.
Methods Mol Biol ; 400: 531-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951758

RESUMO

The extrinsic fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino naphthalene) exhibits extreme sensitivity to the polarity and to the molecular dynamics of the dipoles in its environment. Dipolar relaxation processes are reflected as relatively large spectral shifts. Steady-state measurements of the so-called general polarization (GP) of Laurdan exploit the advantageous spectral properties of Laurdan. Since the main solvent dipoles surrounding Laurdan in biological membranes are water molecules, when no relaxation occurs GP values are high, indicating low water content in the hydrophilic/hydrophobic interface region. Laurdan fluorescence can also be used to obtain topographical information. A hitherto unexploited property of Laurdan, namely its ability to act as a Förster-type resonance energy transfer (FRET) acceptor of tryptophan emission, was used to learn about the physical state of lipids within Förster distance from donor tryptophan residues in integral membrane proteins. The application of this technique to the paradigm integral membrane protein, the nicotinic acetylcholine receptor, is described in this chapter.


Assuntos
2-Naftilamina/análogos & derivados , Proteínas de Peixes/química , Transferência Ressonante de Energia de Fluorescência , Lauratos/química , Lipídeos de Membrana/química , Receptores Nicotínicos/química , Torpedo , 2-Naftilamina/química , Animais , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Triptofano/química
20.
J Biol Chem ; 282(25): 18151-18161, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17392275

RESUMO

Very long-chain (C24 to C34) polyunsaturated fatty acids (VLCPUFA) are important constituents of sphingomyelin (SM) and ceramide (Cer) in testicular germ cells. In the present paper we focused on the SM and Cer and their fatty acids in spermatozoa and their main regions, heads and tails. In bull and ram spermatozoa, SM was the third most abundant phospholipid and VLCPUFA were the major acyl groups ( approximately 70%) of SM and Cer. In rat epididymal spermatozoa the SM/Cer ratio was low in the absence of and could be maintained high in the presence of the cation chelator EDTA, added to the medium used for sperm isolation. This fact points to the occurrence of an active divalent cation-dependent sphingomyelinase. Bull and rat sperm had an uneven head-tail distribution of phospholipid, with virtually all the VLCPUFA-rich SM located at the head, the lower SM content in the rat being determined by the lower sperm head/tail size ratio. Most of the SM from bull sperm heads was readily solubilized with 1% Triton X-100 at 4 degrees C. The detergent-soluble SM fraction was richer in VLCPUFA than the nonsoluble fraction and richer in saturated fatty acids. Cer was produced at the expense of SM, thus decreasing severalfold the SM/Cer ratio in rat spermatozoa incubated for 2 h in presence of the sperm-capacitating agents, calcium, bicarbonate, and albumin. The generation of Cer from SM in the sperm head surface may be an early step among the biochemical and biophysical changes known to take place in the spermatozoon in the physiological events preceding fertilization.


Assuntos
Ceramidas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Espermatozoides/metabolismo , Esfingomielinas/metabolismo , Animais , Cátions , Cromatografia em Camada Delgada , Detergentes/farmacologia , Ácidos Graxos/metabolismo , Lipídeos/química , Masculino , Fosfolipídeos/química , Ratos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...